

handroll - A website generator for software artisans

handroll is a static website generator that uses markup languages like
Markdown, reStructuredText, and Textile.

handroll development is done on GitHub [https://github.com/handroll/handroll]. Announcements and discussions happen
on Google Groups [https://groups.google.com/forum/#!forum/handroll].

Installation

handroll is available for download from PyPI [https://pypi.python.org/pypi/handroll]. You can install it with pip.
handroll is currently supported on Python
3.5,
3.4,
3.3,
2.7,
and PyPy.

$ pip install handroll

Usage

When inside a website’s source directory, the following command will generate
results and store them in output. Use handroll -h to see all the
options.

$ handroll build
Complete.

Features

handroll follows a “batteries included” philosophy for generating static
websites. One goal is to support a wide range of tools to cater to many diverse
interests. The list below isn’t exhaustive, but it provides a good idea of
what handroll is capable of doing.

	Start a new site
with a single command
using Scaffolds
for immediate results.

	Convert Markdown [http://daringfireball.net/projects/markdown/] to HTML.

	Convert reStructuredText [http://docutils.sourceforge.net/rst.html] to
HTML.

	Convert Textile [http://en.wikipedia.org/wiki/Textile] to HTML.

	Convert Sass [http://sass-lang.com/] to CSS.

	Copy static assets like CSS or JavaScript.

	Track blog entries and automatically generate a feed
(see Blog extension).

	Generate a proper Atom XML [http://en.wikipedia.org/wiki/Atom_%28standard%29] feed from metadata
stored in JSON.

	Run a development server with the watch flag to monitor your site and
update the output immediately as you make changes (see Development server).

	Find the site source root so you don’t have to. If you’re anywhere in your
site’s source, calling handroll without the site input parameter will
trigger handroll to look for your site’s root directory.

	Store global configuration in a configuration file (see
Configuration). You’ll never need to specify the output directory
again.

	Keep extra data for templates in a separate front matter section in YAML
format (see Front matter).

	Templates can use the Jinja2 template engine.

	Content is only updated when either a template or the source file is newer
than the existing output file. This eliminates wasted regeneration on
unchanged content.

	Be extensible for users who want to write their own plugins (see
Composers and Extensions).

	Provide timing information to see file processing time.

	Translated to many different languages.

The remaining documentation provides additional details about all listed
features.

Documentation

	Configuration
	site section

	Front matter

	Scaffolds

	Development server

	Composers

	Built-in composers

	Extensions

	Built-in extensions
	Blog extension

	Sitemap extension

	Signals
	frontmatter_loaded

	pre_composition

	post_composition

	Templates
	String templates

	Jinja2 templates

	Translation
	For Translators

	For Developers

	Releases
	Version 3.1, Released December 26, 2016

	Version 3.0, Released March 7, 2016

	Version 2.1, Released October 18, 2015

	Version 2.0, Released July 25, 2015

	Version 1.5, Released February 24, 2015

	Version 1.4, Released December 1, 2014

	Version 1.3, Released September 3, 2014

	Version 1.2, Released July 2, 2014

	Version 1.1, Released June 1, 2014

	Version 1.0, Released May 4, 2014

Configuration

handroll supports an optional handroll.conf file that can be stored at the
root of the site’s directory. This ini style file provides configuration
information that handroll will use while generating the output. For example:

[site]
outdir = ~/mblayman.github.io

Arguments provided on the command line will override the equivalent
configuration file option.

site section

The outdir option will determine the output directory.

The outdir permits relative paths.
One useful pattern with relative paths
is to set outdir = .. as the value.
Source and output can exist
in a single repository or directory.
Putting the output at the root of a repository
makes it easy to deploy the entire project as a website.
When generating output
or watching the source directory,
handroll is aware of the source and
allows the two directories to coexist
without interference.

If a tilde character (~) is supplied,
it will be expanded to the user’s home directory.

The with_blog option set to true, on, yes, or 1 will
enable the blog extension.
See Blog extension for setup information.

Front matter

Source documents like Markdown files can have additional data added to them.
This data is stored in a front matter section at the top of a source document.
handroll will read the extra data and pass it along to the template. In the
template, the data will be accessible by whatever name was provided. An
example Markdown source document would look like:

title: A Sample Site Title
bonus: It's a secret to everybody.

Another heading

This is text in the body.

You may also include the YAML directive (e.g., %YAML 1.1).
The following example is equally valid.

%YAML 1.1

title: A Sample Site Title
bonus: It's a secret to everybody.

Another heading

This is text in the body.

Note: When using front matter, handroll does not infer the title from the first
line of the document. If a title is desired, the attribute must be explicitly
added to the front matter.

Scaffolds

handroll can generate a new site
using a single command.
This will help you get started
in a snap.
After making a site
with the scaffold command,
you can immediately run handroll
to get a functioning website.

$ handroll scaffold default mysite

Scaffolds can include any content.
The default scaffold includes
a base template,
an index file in Markdown,
a configuration file,
and a sample CSS file.

To list the available scaffolds,

$ handroll scaffold

Development server

handroll comes with a built-in development server. The server helps develop
websites even faster by watching the changes you make. As files in your site
are created, modified, or moved, the server will update your output with each
change.

The development server is available with the watch command. The
server will make your site accessible on http://localhost:8000.

Here is an example:

matt@eden:~/handroll/sample$ handroll watch
Serving /home/matt/handroll/sample/output at http://localhost:8000/.
Press Ctrl-C to quit.
Generating HTML for /home/matt/handroll/sample/index.md ...

Composers

handroll uses a plugin system to decide how to process each file type. The
plugins are called composers. A composer is provided a source file and can
produce whatever output it desires. handroll will load each available
composer using setuptools entry points. handroll loads the class and
constructs a Composer instance by invoking a no parameter constructor.

	
class handroll.composers.Composer(config)

	Interface for all composers

	
__init__(config)

	Each composer is given the configuration when instantiated.

	
compose(catalog, source_file, out_dir)

	Compose whatever appropriate output is generated by the composer.

	Parameters:	
	catalog – the TemplateCatalog

	source_file – the filename of the source

	out_dir – the directory to store output

	
get_output_extension(filename)

	Get the extension of the output file generated by this composer.

The filename is required because some composers may vary their
extension based on the filename.

A plugin should be added to the handroll.composers entry point group. For
example, the MarkdownComposer plugin included by default defines its entry
point in setup.py as:

entry_points={
 'handroll.composers': [
 '.md = handroll.composers.md:MarkdownComposer',
]
}

This entry point registers the MarkdownComposer class in the
handroll.composers.md module for the .md file extension. The example is
slightly confusing because the entry point name and the package are the same so
here is a fictious example.

A composer class called FoobarComposer defined in another.package for
the .foobar file extension would need the following entry point.

entry_points={
 'handroll.composers': [
 '.foobar = another.package:FoobarComposer',
]
}

Built-in composers

	
class handroll.composers.atom.AtomComposer(config)

	Compose an Atom feed from an Atom metadata file (.atom).

The AtomComposer parses the metadata specified in the source file and
produces an XML Atom feed. AtomComposer uses parameters that are needed
by Werkzeug’s AtomFeed API. Refer to the Werkzeug documentation [http://werkzeug.pocoo.org/docs/contrib/atom/] for all the available
options.

The dates in the feed should be in RfC 3339 [http://www.ietf.org/rfc/rfc3339.txt] format (e.g.,
2014-06-13T11:39:30).

Here is a sample feed:

{
 "title": "Sample Feed",
 "url": "http://some.website.com/archive.html",
 "id": "http://some.website.com/feed.xml",
 "author": "Matt Layman",
 "entries": [
 {
 "title": "Sample C",
 "updated": "2014-05-04T12:00:00",
 "url": "http://some.website.com/c.html",
 "summary": "A summary of the sample post"
 },
 {
 "title": "Sample B",
 "updated": "2014-03-17T12:00:00",
 "url": "http://some.website.com/b.html",
 "summary": "A summary of the sample post"
 },
 {
 "title": "Sample A",
 "updated": "2014-02-23T00:00:00",
 "url": "http://some.website.com/a.html",
 "summary": "A summary of the sample post"
 }
]
}

	
class handroll.composers.j2.Jinja2Composer(config)

	Compose any content from a Jinja 2 template files (.j2).

The Jinja2Composer takes a template file and processes it
through the Jinja 2 renderer. The site configuration is provided
to the context for access to global data.

The output file uses the same name as the source file with
the .j2 extension removed.

	
class handroll.composers.CopyComposer(config)

	Copy a source file to the destination.

CopyComposer is the default composer for any unrecognized file type.
The source file will be copied to the output directory unless there is a
file with an identical name and content already at the destination.

	
class handroll.composers.md.MarkdownComposer(config)

	Compose HTML from Markdown files (.md).

The first line of the file will be used as the title data for the
template. All following lines will be converted to HTML and sent to the
template as the content data.

The MarkdownComposer supports syntax highlighting using Pygments. Code
can be specified using “fenced code” triple backticks.

```python
class Foo(object):
    '''This sample code would be highlighted in a Python style.'''
```


Use pygmentize to create your desired CSS file. Refer to the
Pygments documentation [http://pygments.org/docs/] for more information.

$ pygmentize -S default -f html > pygments.css

The MarkdownComposer generates better typographical quotes
by using the SmartyPants library.

	
class handroll.composers.rst.ReStructuredTextComposer(config)

	Compose HTML from reStructuredText files (.rst).

The first line of the file will be used as the title data for the
template. All following lines will be converted to HTML and sent to the
template as the content data.

	
class handroll.composers.sass.SassComposer(path=None)

	Compose CSS files from Sass files (.scss or .sass).

Sass is a CSS preprocessor to help manage CSS files. The Sass website has
great documentation [http://sass-lang.com/guide] to explain how to use
it.

Because Sass is not written in the same language as handroll, it must be
installed separately before it can be used. Check out the installation
options [http://sass-lang.com/install].

	
class handroll.composers.txt.TextileComposer(config)

	Compose HTML from Textile files (.textile).

The first line of the file will be used as the title data for the
template. All following lines will be converted to HTML and sent to the
template as the content data.

Extensions

In addition to Composers, handroll has an extension system
to plug in other functionality.
Users enable extensions
by adding with_* = true to their site section
in the configuration file,
where * is the name of the extension.
For example, the blog extension is named blog,
and with_blog = true will enable it.

Extension authors can use the base Extension
to create new extensions.
Extensions are never directly called,
but an extension can connect to one of handroll’s Signals.

	
class handroll.extensions.base.Extension(config)

	A base extension which hooks handler methods to handroll’s signals.

	
on_frontmatter_loaded(source_file, frontmatter)

	Handle the frontmatter_loaded signal.

Activate this handler by setting handle_frontmatter_loaded
to True in the extension subclass.

	Parameters:	
	source_file – Absolute path of the source file

	frontmatter – Dictionary of parsed frontmatter

	
on_post_composition(director)

	Handle the post_composition signal.

Activate this handler by setting handle_post_composition
to True in the extension subclass.

	Parameters:	director – The director instance

	
on_pre_composition(director)

	Handle the pre_composition signal.

Activate this handler by setting handle_pre_composition
to True in the extension subclass.

	Parameters:	director – The director instance

Extension authors can include new extensions by adding to the
handroll.extensions entry point. For example, handroll includes
the following entry point in setup.py:

entry_points={
 'handroll.extensions': [
 'blog = handroll.extensions.blog:BlogExtension',
]
}

Built-in extensions

Blog extension

The blog extension allows you to automatically generate an atom feed
of blog entries.
It can also create an entry list for one of your pages.

Enable the blog extension by adding with_blog = True to
the site section of your configuration file.

Atom feed

The extension requires some additional information
to create a valid atom feed.
Add a blog section to your configruation file
with the following fields:

	atom_author - The author of the blog

	atom_id - A unique identifier for the atom feed.
One suggestion is to use the URL of the feed itself.
For example, http://www.mattlayman.com/feed.xml.

	atom_title - The title of the blog

	atom_url - The URL for the feed.
For example, http://www.mattlayman.com/archive.html.

To create the atom feed, you need to specify an output path
using the atom_output option.
The path provided is relative to the output directory.

[blog]
atom_output = feed.xml

In this example, the atom feed would be stored
in the root of the output directory
with a filename of feed.xml.

List page

To create a blog list page,
add a list_template option to your blog section.
If you include list_template,
then you must also include list_output.
list_output is a path relative to the output directory.

When the blog extension generates the list page,
the context will receive a blog_list.
The blog_list is an HTML fragment of list item tags.
There is one list item tag for every post.

Here is a possible sample template.

<html>
<body>

 {{ blog_list }}

</body>
</html>

And here is some possible output.

<html>
<body>

 Another post
 First post!

</body>
</html>

For more complex formatting,
the actual blog posts are provided
in the context
as posts.

Blog post frontmatter

A source file is marked as a blog post by setting blog: True
in the front matter.
The blog front matter has required and optional fields.

Required fields:

	title - The title of the post

	date - The published date of the post.
The date should be in RfC 3339 format
(e.g., 2015-07-15T12:00:00Z).

Optional fields:

	summary - A summary of the post.

Sitemap extension

The sitemap extension generates a sitemap
of your site’s HTML content.
The generated file will be stored
in the root
of the output directory
as sitemap.txt.

Enable the sitemap extension by adding with_sitemap = True to
the site section of your configuration file.

Signals

handroll fires various signals while running. These signals provide hooks
for extensions to execute additional code. The list of signals is provided
below.

frontmatter_loaded

frontmatter_loaded fires whenever a file contains a front matter section
(see Front matter). Any handler function that connects to the signal
will be called with:

	source_file - The absolute path to the file containing front matter.

	frontmatter - The front matter dictionary that was loaded.

pre_composition

pre_composition fires before processing the entire site. When the
watcher is running (see Development server), the signal will fire before
handling any file or directory change.
Any handler function that connects to the signal will be called with:

	director - The director instance that processed the site.

post_composition

post_composition fires after processing the entire site. When the
watcher is running (see Development server), the signal will fire after
handling any file or directory change.
Any handler function that connects to the signal will be called with:

	director - The director instance that processed the site.

Templates

Your source content (e.g., Markdown or reStructuredText) is read and converted
into HTML. After content is converted to HTML, it is passed to a template
system as a variable called content. Each template system can then insert
the HTML content into a template.

handroll supports multiple template systems. Templates are stored in a
templates directory at the root of your site. Alternatively, if you have
very simple needs, you can use a template.html file at your site’s root.

Any template used from the templates directory must be specified using
front matter (see Front matter) or the default template.html will be
used. This sample Markdown file uses a string template.

%YAML 1.1

title: With a different template
template: different.html

Another heading

This is using a different string template.

String templates

Any template using the .html extension (including the default
template.html) will uses Python’s built-in string templates [https://docs.python.org/library/string.html#template-strings]. String
templates are limited to the capabilities of the standard library, but they
can support basic needs.

Jinja2 templates

Any template using the .j2 extension will use the Jinja2 [http://jinja.pocoo.org/docs/dev/] template language. handroll works with
Jinja’s template inheritance system and the majority of Jinja’s other features.

Translation

For Translators

Translation for handroll is done on handroll’s Transifex project [https://www.transifex.com/projects/p/handroll/]. All contributions from any
language are welcome. The project should be configured to automatically accept
requests to join the translation team.

Translators will be added to the AUTHORS list of contributors for contributions
of any size (unless you specifically do not want to be listed).

If you have any problems, please feel free to report an issue on Github [https://github.com/handroll/handroll/issues/new]. If there is a new
language that you want to translate for, please file an issue so it can be
added (there is a small amount of software setup to make a new language work
with handroll).

For Developers

All user interface strings (aside from flag names) should be translated.
Strings are wrapped in a conventional way for gettext using the alias _.
The gettext method is configured in the handroll.i18n module. Any new code
would use that method for strings. For example:

from handroll.i18n import _

translated = _('This string is translated.')

The handroll.pot file is the template that the translators use as the basis
for translation. handroll uses Babel [http://babel.pocoo.org/] to generate
the pot file. A new pot file is generated by executing
python setup.py extract_messages. The updated pot file is automatically
synced to Transifex after it is pushed to GitHub.

Deployment

Download the po files. The mo files are automatically generated with
the sdist command.

$ python transifex.py
$ python setup.py sdist

Releases

Version 3.1, Released December 26, 2016

	Processs Jinja 2 templates for any file with a .j2 extension
with the built-in Jinja2Composer.

	Add SitemapExtension to generate sitemaps.

	Move version information into the handroll package
so it is available at runtime.

	Perform continuous integration testing on OS X.

	Include posts in the blog feed list
to permit more complex list rendering.

	Remove support for Python 2.6

Version 3.0, Released March 7, 2016

	Replaced all flag based commands with sub-commands.
This change means all interaction now happens through
handroll build, handroll watch, and handroll scaffold.

Version 2.1, Released October 18, 2015

	Create a site quickly with the new scaffold command
(e.g., handroll -s default new_site)

	Use the SmartyPants library to generate better quotation
marks for Markdown.

	Composers can be forced to compose with the --force flag.

	Translated to Arabic.

	Relax the frontmatter requirement and don’t force the
inclusion of the YAML directive (e.g., %YAML 1.1).

	Support Python 3.5.

	An output directory can be a relative path.

Version 2.0, Released July 25, 2015

	Added an extension interface for plugin authors to integrate
with various events.

	Added a blog extension to automatically generate an Atom XML
feed and blog listing page.

	Translated to Greek.

Version 1.5, Released February 24, 2015

	Translated to Dutch.

Version 1.4, Released December 1, 2014

	A development server (accessible from the watch flag) will monitor a site
and generate new output files as the source is modified.

	Sass support for .scss and .sass files.

	Add internationalization (i18n).

	Translated to French, German, Italian, Portuguese, and Spanish.

	Skip certain directories that should not be in output (like a Sass cache).

	Moved project to a GitHub organization to separate from a personal account.

	Include documentation in the release.

	Massive unit test improvements (100% coverage).

Version 1.3, Released September 3, 2014

	Update the appropriate output only when a template or content was modified.

	Use Jinja templates or standard Python string templates.

	Provide YAML formatted front matter to add any data to a template.

Version 1.2, Released July 2, 2014

	Add a basic configuration file to specify the output directory.

	A search for the site root is done when no site path is provided.

	Add timing reporting to find slow composers.

	Update Textile version to enable Python 3 support.

	Generate Atom feeds.

	Drop 3.2 support. Too many dependencies do not support it.

Version 1.1, Released June 1, 2014

	Skip undesirable file types (e.g., Vim .swp files).

	Use Markdown code highlighting (via Pygments) and fenced code extensions.

	All input and output is handled as UTF-8 for better character encoding.

	Run against Python versions 2.6 through 3.4 using Travis CI.

	Add a plugin architecture to support composers for any file type.

	Provide HTML docs at Read the Docs.

	Textile support for .textile files.

	ReStructuredText support for .rst files.

	Support PyPy.

Version 1.0, Released May 4, 2014

	Initial release of handroll

	Copy all file types.

	Convert Markdown to HTML.

Index

 _
 | A
 | C
 | E
 | G
 | J
 | M
 | O
 | R
 | S
 | T

_

 	
 	__init__() (handroll.composers.Composer method)

A

 	
 	AtomComposer (class in handroll.composers.atom)

C

 	
 	compose() (handroll.composers.Composer method)

 	
 	Composer (class in handroll.composers)

 	CopyComposer (class in handroll.composers)

E

 	
 	Extension (class in handroll.extensions.base)

G

 	
 	get_output_extension() (handroll.composers.Composer method)

J

 	
 	Jinja2Composer (class in handroll.composers.j2)

M

 	
 	MarkdownComposer (class in handroll.composers.md)

O

 	
 	on_frontmatter_loaded() (handroll.extensions.base.Extension method)

 	
 	on_post_composition() (handroll.extensions.base.Extension method)

 	on_pre_composition() (handroll.extensions.base.Extension method)

R

 	
 	ReStructuredTextComposer (class in handroll.composers.rst)

S

 	
 	SassComposer (class in handroll.composers.sass)

T

 	
 	TextileComposer (class in handroll.composers.txt)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 handroll - A website generator for software artisans

 		
 Configuration

 		
 site section

 		
 Front matter

 		
 Scaffolds

 		
 Development server

 		
 Composers

 		
 Built-in composers

 		
 Extensions

 		
 Built-in extensions

 		
 Blog extension

 		
 Atom feed

 		
 List page

 		
 Blog post frontmatter

 		
 Sitemap extension

 		
 Signals

 		
 frontmatter_loaded

 		
 pre_composition

 		
 post_composition

 		
 Templates

 		
 String templates

 		
 Jinja2 templates

 		
 Translation

 		
 For Translators

 		
 For Developers

 		
 Deployment

 		
 Releases

 		
 Version 3.1, Released December 26, 2016

 		
 Version 3.0, Released March 7, 2016

 		
 Version 2.1, Released October 18, 2015

 		
 Version 2.0, Released July 25, 2015

 		
 Version 1.5, Released February 24, 2015

 		
 Version 1.4, Released December 1, 2014

 		
 Version 1.3, Released September 3, 2014

 		
 Version 1.2, Released July 2, 2014

 		
 Version 1.1, Released June 1, 2014

 		
 Version 1.0, Released May 4, 2014

_static/up-pressed.png

_static/up.png

_static/plus.png

